How do you solve (1/4) e^(-2 t) = 0.1(14)e2t=0.1?

1 Answer

t=0.458145t=0.458145

Explanation:

Start from the given equation

(1/4)*e^(-2t)=0.1(14)e2t=0.1

4*(1/4)*e^(-2t)=4(0.1)4(14)e2t=4(0.1) Multiply both sides by 44

e^(-2t)=0.4e2t=0.4

ln e^(-2t)=ln 0.4lne2t=ln0.4 Take the logarithm of both sides

-2t=ln 0.42t=ln0.4

(-2t)/-2=(ln 0.4)/-22t2=ln0.42 Divide both sides by -22

(cancel(-2)t)/cancel(-2)=(ln 0.4)/-2

t=(ln 0.4)/-2

t=0.458145

Have a nice day from the Philippines !!!