How do you solve 119/(e^(6x)-14)=7119e6x14=7?

1 Answer
Jan 18, 2017

x=1/6ln31x=16ln31

Explanation:

frac{119}{e^(6x)-14}=7119e6x14=7

Multiply each side by (e^(6x)-14):(e6x14):
119=7(e^(6x)-14)119=7(e6x14)

Divide each side by 7:
17=e^(6x)-1417=e6x14

Add 14 to each side:
31=e^(6x)31=e6x

Take the natural log of each side:
ln(31)=ln(e^(6x))ln(31)=ln(e6x)

6x=ln316x=ln31

Divide each side by 6:
x=1/6ln31x=16ln31

Check answer by confirming e^(6x)-14 cancel=0 (Make sure denominator of original equation is not zero)
e^(6x)=14
6x=ln14
x=1/6ln14
1/6ln31cancel=ln14