How do you solve 12(1-4^x)=1812(14x)=18?

1 Answer
Jul 31, 2016

x=-1/2+((2k+1)pi i)/ln(4)x=12+(2k+1)πiln(4) for any integer kk

Explanation:

Divide both sides by 1212 to get:

1-4^x = 18/12 = 3/214x=1812=32

Add 4^x-3/24x32 to both sides to get:

-1/2 = 4^x12=4x

For any Real value of xx, 4^x > 04x>0, so it cannot equal -1/212.

If we had wanted 4^x = 1/24x=12 then we could have found:

2^(-1) = 1/2 = 4^x = (2^2)^x = 2^(2x)21=12=4x=(22)x=22x

and hence solution x=-1/2x=12.

We can make this into a set of Complex solutions for our original problem by adding an odd multiple of (pi i)/ln(4)πiln(4)

Let x=-1/2+((2k+1)pi i)/ln(4)x=12+(2k+1)πiln(4) for any integer kk

Then:

4^x = 4^(-1/2+((2k+1)pi i)/ln(4))4x=412+(2k+1)πiln(4)

=4^(-1/2)*4^(((2k+1)pi i)/ln(4))=4124(2k+1)πiln(4)

=1/2*(e^ln(4))^(((2k+1)pi i)/ln(4))=12(eln(4))(2k+1)πiln(4)

=1/2*e^(ln(4)*((2k+1)pi i)/ln(4))=12eln(4)(2k+1)πiln(4)

=1/2*e^((2k+1)pi i)=12e(2k+1)πi

=1/2*(e^(pi i))^(2k+1)=12(eπi)2k+1

=1/2*(-1)^(2k+1)=12(1)2k+1

=-1/2=12