How do you solve 12(1-4^x)=1812(1−4x)=18?
1 Answer
Explanation:
Divide both sides by
1-4^x = 18/12 = 3/21−4x=1812=32
Add
-1/2 = 4^x−12=4x
For any Real value of
If we had wanted
2^(-1) = 1/2 = 4^x = (2^2)^x = 2^(2x)2−1=12=4x=(22)x=22x
and hence solution
We can make this into a set of Complex solutions for our original problem by adding an odd multiple of
Let
Then:
4^x = 4^(-1/2+((2k+1)pi i)/ln(4))4x=4−12+(2k+1)πiln(4)
=4^(-1/2)*4^(((2k+1)pi i)/ln(4))=4−12⋅4(2k+1)πiln(4)
=1/2*(e^ln(4))^(((2k+1)pi i)/ln(4))=12⋅(eln(4))(2k+1)πiln(4)
=1/2*e^(ln(4)*((2k+1)pi i)/ln(4))=12⋅eln(4)⋅(2k+1)πiln(4)
=1/2*e^((2k+1)pi i)=12⋅e(2k+1)πi
=1/2*(e^(pi i))^(2k+1)=12⋅(eπi)2k+1
=1/2*(-1)^(2k+1)=12⋅(−1)2k+1
=-1/2=−12