How do you solve #15^(2x) = 36#?

1 Answer
Mar 16, 2016

#x~~0.66#

Explanation:

#1#. Since the left and right sides of the equation do not have the same base, start by taking the log of both sides.

#15^(2x)=36#

#log(15^(2x))=log(36)#

#2#. Use the log property, #log_color(purple)b(color(red)m^color(blue)n)=color(blue)n*log_color(purple)b(color(red)m)#, to simplify the left side of the equation.

#(2x)log15=log36#

#3#. Solve for #x#.

#2x=log36/log15#

#x=log36/(2log15)#

#color(green)(|bar(ul(color(white)(a/a)x~~0.66color(white)(a/a)|)))#