How do you solve 15^(2x) = 36152x=36?

1 Answer
Mar 16, 2016

x~~0.66x0.66

Explanation:

11. Since the left and right sides of the equation do not have the same base, start by taking the log of both sides.

15^(2x)=36152x=36

log(15^(2x))=log(36)log(152x)=log(36)

22. Use the log property, log_color(purple)b(color(red)m^color(blue)n)=color(blue)n*log_color(purple)b(color(red)m)logb(mn)=nlogb(m), to simplify the left side of the equation.

(2x)log15=log36(2x)log15=log36

33. Solve for xx.

2x=log36/log152x=log36log15

x=log36/(2log15)x=log362log15

color(green)(|bar(ul(color(white)(a/a)x~~0.66color(white)(a/a)|)))