How do you solve 2^(x+1) = 3(4^x)?

1 Answer
Apr 12, 2016

x = 1-(log 3)/log 2.

Explanation:

Use (a^m)^n=a^(mn) and a^m/a^n=a^(m-n).

2^(x+1)=3(4^x)=3(2^2)^x=3(2^(2x))
So, 2^(x+1-2x)=3 or 2^(1-x)+3.
Equating logarithms, (1-x) log 2=log 3.
x=1-(log 3)/log 2..