As the bases are different, we cannot just compare them.
The variables are in the exponents, so logs are called for.
Log both sides:
log2^(x+3) = log3^(x-4)" "larrlog2x+3=log3x−4 ← use the log power law
(x+3)log2 = (x-4)log3 " "larr(x+3)log2=(x−4)log3 ← move the log terms to one side
(x+3)/(x-4) = (log3)/(log2) = 1.58496x+3x−4=log3log2=1.58496
(x+3)/(x-4) = 1.58496" "larrx+3x−4=1.58496 ← cross-mulitply
x+3 = 1.58496(x-4)x+3=1.58496(x−4)
x +3 = 1.58496x -6.33985" "larrx+3=1.58496x−6.33985 ← re-arrange the terms
3+6.33985 = 1.58496x -x3+6.33985=1.58496x−x
9.633985 = 0.58496x9.633985=0.58496x
9.633985/0.58496 = x9.6339850.58496=x
x = 16.4695x=16.4695