How do you solve 2^(x+3) = 3^(x-4)2x+3=3x4?

1 Answer
Sep 24, 2016

x = 16.4695x=16.4695

Explanation:

As the bases are different, we cannot just compare them.

The variables are in the exponents, so logs are called for.

Log both sides:

log2^(x+3) = log3^(x-4)" "larrlog2x+3=log3x4 use the log power law

(x+3)log2 = (x-4)log3 " "larr(x+3)log2=(x4)log3 move the log terms to one side

(x+3)/(x-4) = (log3)/(log2) = 1.58496x+3x4=log3log2=1.58496

(x+3)/(x-4) = 1.58496" "larrx+3x4=1.58496 cross-mulitply

x+3 = 1.58496(x-4)x+3=1.58496(x4)

x +3 = 1.58496x -6.33985" "larrx+3=1.58496x6.33985 re-arrange the terms

3+6.33985 = 1.58496x -x3+6.33985=1.58496xx

9.633985 = 0.58496x9.633985=0.58496x

9.633985/0.58496 = x9.6339850.58496=x

x = 16.4695x=16.4695