How do you solve 2log4xlog4(x1)=1?

1 Answer
Oct 12, 2016

x=2

Explanation:

Start by applying the rule alogn=logna.

log4(x2)log4(x1)=1

Now apply the difference rules of logarithms: loga(n)loga(m)=loga(nm).

log4(x2x1)=1

Convert to exponential form using the rule loga(n)=bab=n

x2x1=41

x2x1=4

x2=4(x1)

x2=4x4

x24x+4=0

(x2)(x2)=0

x=2

Checking in the original equation:

log4(22)log4(21)=?1

log4(4)log4(1)=?1

10=1

The solution works!

Hopefully this helps!