How do you solve 2log_6(4x)=02log6(4x)=0?

1 Answer
Jul 15, 2016

x = 1/4x=14

Explanation:

By definition if log_a b= c, " then " a^c = blogab=c, then ac=b

2log_6 (4x) =02log6(4x)=0

(2log_6 (4x))/2 =0/22log6(4x)2=02

log_6 4x = 0" "rArr 6^0 = 4xlog64x=0 60=4x

6^0 = 4x60=4x

1 = 4x1=4x

x = 1/4x=14