How do you solve 2x - 6 = -5x^22x6=5x2 by completing the square?

1 Answer
Jul 18, 2016

x=-1.313x=1.313 to 3 decimal places

x=+0.914x=+0.914 to 3 decimal places

Explanation:

Standard form -> y=ax^2+bx+cy=ax2+bx+c

Converting the given equation to standard form gives

y=0=5x^2+2x-6y=0=5x2+2x6

But y=0y=0 is a specific case

So for the general case we have:

y=5x^2+2x-6y=5x2+2x6
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

the process of completing the square introduces an error. It ads a term to the original equation. Thus this term must be removed. This is achieved by introducing a correction.

Let kk be the correction value.

color(blue)("Step 1")Step 1

write as:" "y=5(x^2+2/5x)-6 y=5(x2+25x)6

Include the correction

y=5(x^2+2/5x)-6+ky=5(x2+25x)6+k

At this stage k=0k=0 as we have not changed the overall values.
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 2")Step 2

Move the power from x^2x2 to outside the brackets

y=5(x+2/5x)^2-6+k larr" now "k" starts to have a value"y=5(x+25x)26+k now k starts to have a value
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 3")Step 3

Remove the xx from 2/5x25x

y=5(x+2/5)^2-6+k y=5(x+25)26+k
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Step 4")Step 4

Halve the 2/525

y=5(x+2/10)^2-6+k y=5(x+210)26+k
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is the point where we find the value of kk
The error comes from: 5(2/10)^25(210)2. This is an added term and needs to be removed.

So 5(2/10)^2+k=05(210)2+k=0

=>color(red)(k=-(5xx4)/100" "=" "-20/100" " =" " -1/5)k=5×4100 = 20100 = 15

So we now have:

y=5(x+2/10)^2-6color(red)(-1/5) y=5(x+210)2615

color(white)(2/2)22

" "color(blue)(ul(bar(|color(white)(2/2)y=5(x+2/10)^2-31/5color(white)(2/2)|)))
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Set y=0 then we have

+31/25=(x+2/10)^2

=>x+2/10=+-sqrt(31/25)

=>x=-2/10+-sqrt(31/25)

=>x=-2/10+-sqrt(31)/5

x=-1.313 to 3 decimal places

x=+0.914 to 3 decimal places

Tony B