How do you solve 3^(2-x)=5^(2x+1)?

1 Answer
Dec 19, 2015

I found x=0.13614

Explanation:

We can try taking the natural log of both sides:
ln(3^(2-x))=ln(5^(2x+1))
then use the property of logs:
logx^y=ylogx to write:
(2-x)ln(3)=(2x+1)ln(5)
2ln(3)-xln(3)=2xln(5)+ln(5)
collecting x:
x(2ln(5)+ln(3))=2ln(3)-ln(5)
so:
x=(2ln(3)-ln(5))/(2ln(5)+ln(3))=0.13614