How do you solve 32x1=523x?

1 Answer
Nov 28, 2015

I found: x=0.61454

Explanation:

Take the natural log of both sides:
ln32x1=ln523x
use the property of logs:
logxa=alogx
(2x1)ln3=(23x)ln5
2(ln3)xln3=2ln53(ln5)x
collect x:
x[2(ln3)+3(ln5)]=2ln5+ln3
x[7.02554]=4.31748
x=4.317487.02554=0.61454