How do you solve 3^(2x) = 7532x=75?

1 Answer

x=1.9649735207179x=1.9649735207179

Explanation:

Start from the given equation:

3^(2x)=7532x=75

Take the logarithm of both sides of the equation

log_10 3^(2x)=log_10 75log1032x=log1075

(2x)*log_10 3=log_10 75(2x)log103=log1075

divide both sides of the equation by log_10 3log103

((2x)*log_10 3)/log_10 3=log_10 75/log_10 3(2x)log103log103=log1075log103

((2x)*cancel(log_10 3))/cancel(log_10 3)=log_10 75/log_10 3

2x=log_10 75/log_10 3

x=1/2*log_10 75/log_10 3 the exact value

color (red)(x=1.9649735207179 the calculator value

Check: at x=1.9649735207179

3^(2x)=75

3^((2*(1.9649735207179)))=75

75=75

Have a nice day !!! from the Philippines...