How do you solve 3^(x+2) = 10^(x-1)?

1 Answer
Jul 13, 2018

I tried this:

Explanation:

I would take the logarithm in base 10 (written "L"og) of both sides:

"L"og(3^(x+2))="L"og(10^(x-1))

use a property of log to manipulate the powers:

(x+2)"L"og(3)=(x-1)"L"og(10)

but "L"og(10)=1 so we get:

(x+2)"L"og(3)=x-1

rearrange:

x"L"og(3)+2"L"og(3)-x=-1

x["L"og(3)-1]=-2"L"og(3)-1

x=(-2"L"og(3)-1)/["L"og(3)-1]=3.73746

using a normal pocket calculator to evaluate the log in base 10.