How do you solve 3^(x^2 + 20) = (1/27)^(3x)3x2+20=(127)3x?

1 Answer
Aug 20, 2015

The solutions are
color(blue)(x=-4,x=-5x=4,x=5

Explanation:

3^(x^2+20)=(1/27)^(3x)3x2+20=(127)3x

We know that 1/27=1/(3^3127=133

So,

3^(x^2+20)=(1/3^3)^(3x)3x2+20=(133)3x

By property
color(blue)(1/a=a^-11a=a1

3^(x^2+20)=color(blue)((3^-3))^(3x)3x2+20=(33)3x

3^(x^2+20)=3^(-9x)3x2+20=39x
Now as bases are equal we equate powers and find xx

x^2+20=-9xx2+20=9x

x^2+9x+20=0x2+9x+20=0

We can Split the Middle Term of this expression to factorise it and find solutions.

x^2+color(blue)(9x)+20=0x2+9x+20=0

x^2+color(blue)(5x+4x)+20=0x2+5x+4x+20=0

x(x+5)+4(x+5)=0x(x+5)+4(x+5)=0

(x+4)(x+5)=0(x+4)(x+5)=0

We now equate the factors to zero.
x+4=0, x=-4x+4=0,x=4

x+5=0, x=-5x+5=0,x=5