How do you solve 30002+e2x=2?

1 Answer
Dec 13, 2015

x=ln(1498)2

Explanation:

We will use the following properties of logarithms:

  • ln(ax)=xln(a)

  • loga(a)=1


30002+e2x=2

3000=2(2+e2x)=4+2e2x

2996=2e2x

1498=e2x

ln(1498)=ln(e2x)=2xln(e)=2x(1)=2x

x=ln(1498)2