How do you solve 4^(3x)=3^(x-4)?

1 Answer
Dec 1, 2015

x = -(4ln(3))/(3ln(4) - ln(3))

Explanation:

For this problem, we will be using the property of logarithms that

ln(a^x) = xln(a)


4^(3x) = 3^(x-4)

=> ln(4^(3x)) = ln(3^(x-4))

#=> 3xln(4) = (x-4)ln(3)

=> 3xln(4) - xln(3) = -4ln(3)

=> x(3ln(4) - ln(3)) = -4ln(3)

=> x = -(4ln(3))/(3ln(4) - ln(3))