How do you solve 4^x - 2^(x+1)-15=0?

1 Answer
Apr 18, 2018

x=log_2 5~~2.322#.

Explanation:

Observe that, 4^x=(2^2)^x=(2^x)^2, and, 2^(x+1)=2^x*2^1.

Therefore, the given eqn. is, (2^x)^2-2*2^x-15=0.

So, if we subst. 2^x=y, the eqn. becomes,

y^2-2y-15=0.

(y-5)(y+3)=0.

:. y=5, or, y=-3.

Since, y=2^x gt 0, y=-3 is not admissible.

:. y=5 rArr 2^x=5.

:. x=log_2 5.

Using the Change of Base Rule, x=log_10 5/log_10 2,

=0.699/0.301~~2.322