How do you solve 4^x * 5^(4x+3) = 10^(2x+3)4x⋅54x+3=102x+3?
2 Answers
Explanation:
4^x*5^(4x+3)=10^(2x+3)4x⋅54x+3=102x+3
log(4^x*5^(4x+3))=log(10^(2x+3))log(4x⋅54x+3)=log(102x+3)
log(4^x)+log(5^(4x+3))=log(10^(2x+3))log(4x)+log(54x+3)=log(102x+3)
xlog(4)+(4x+3)log(5)=(2x+3)log(10)xlog(4)+(4x+3)log(5)=(2x+3)log(10)
xlog(4)+4xlog(5)+3log(5)=2xlog(10)+3log(10)xlog(4)+4xlog(5)+3log(5)=2xlog(10)+3log(10)
xlog(4)+4xlog(5)-2xlog(10)=3log(10)-3log(5)xlog(4)+4xlog(5)−2xlog(10)=3log(10)−3log(5)
x(log(4)+4log(5)-2log(10))=3log(10)-3log(5)x(log(4)+4log(5)−2log(10))=3log(10)−3log(5)
x=(3log(10)-3log(5))/(log(4)+4log(5)-2log(10))x=3log(10)−3log(5)log(4)+4log(5)−2log(10)
color(green)(|bar(ul(color(white)(a/a)x~~0.65color(white)(a/a)|)))
Explanation:
Dividing both sides by
Taking
Dividing both sides by