#1#. Start by taking the logarithm of both sides, since the bases are not the same on the left and right sides of the equation.
#4^x*5^(4x+3)=10^(2x+3)#
#log(4^x*5^(4x+3))=log(10^(2x+3))#
#2#. Use the log property, #log_color(purple)b(color(red)m*color(blue)n)=log_color(purple)b(color(red)m)+log_color(purple)b(color(blue)n)# to simplify the left side of the equation.
#log(4^x)+log(5^(4x+3))=log(10^(2x+3))#
#3#. Use the log property, #log_color(purple)b(color(red)m^color(blue)n)=color(blue)n*log_color(purple)b(color(red)m)#, to rewrite both sides of the equation.
#xlog(4)+(4x+3)log(5)=(2x+3)log(10)#
#4#. Expand the brackets.
#xlog(4)+4xlog(5)+3log(5)=2xlog(10)+3log(10)#
#5#. Bring all terms with the variable, #x#, to the left side of the equation and all terms without to the right side.
#xlog(4)+4xlog(5)-2xlog(10)=3log(10)-3log(5)#
#6#. Factor out #x# from the terms on the left side.
#x(log(4)+4log(5)-2log(10))=3log(10)-3log(5)#
#7#. Solve for #x#.
#x=(3log(10)-3log(5))/(log(4)+4log(5)-2log(10))#
#color(green)(|bar(ul(color(white)(a/a)x~~0.65color(white)(a/a)|)))#