How do you solve 5(2)^(2x)-4=135(2)2x4=13?

1 Answer
Jan 27, 2017

Please see the explanation.

Explanation:

Add 4 to both sides:

5(2)^(2x) = 175(2)2x=17

Divide both sides by 5:

(2)^(2x) = 17/5(2)2x=175

Use the natural logarithm on both sides:

ln((2)^(2x)) = ln(17/5)ln((2)2x)=ln(175)

Use the property ln(a^b) = (b)ln(a)ln(ab)=(b)ln(a)

(2x)ln((2)) = ln(17/5)(2x)ln((2))=ln(175)

Divide both sides by 2ln(x):

x = ln(17/5)/(2ln(2))x=ln(175)2ln(2)

check:

5(2)^(2(ln(17/5)/(2ln(2)))) - 4 = 135(2)2(ln(175)2ln(2))4=13

5(2)^((ln(17/5)/(ln(2)))) - 4 = 135(2)(ln(175)ln(2))4=13

5(2)^((log_2(17/5)) - 4 = 135(2)(log2(175))4=13

5(17/5) - 4 = 135(175)4=13

17 - 4 = 13174=13

13 = 1313=13

x = ln(17/5)/(2ln(2))x=ln(175)2ln(2) checks.