How do you solve 5(4^36)=4^x5(436)=4x?

2 Answers
May 7, 2016

x=37.161x=37.161

Explanation:

5(4^36)=4^x5(436)=4x means

x=log_4(5(4^36)x=log4(5(436) or

x=log_4(5)+log_4(4^36)x=log4(5)+log4(436) or

x=log_4(5)+36log_4(4)x=log4(5)+36log4(4) or

x=log_4 5+36x=log45+36 or

x=log5/log4+36=1.161+36=37.161x=log5log4+36=1.161+36=37.161

May 9, 2016

Use laws of indices first, then logs.
37.61 = x37.61=x

Explanation:

There are powers of 4 on both sides of the equation.

5(4^36) = 4^x " divide by" 4^365(436)=4x divide by436

5 = (4^x)/4^36" subtract indices"5=4x436 subtract indices

5 = 4^(x - 36)5=4x36

log 5 = (x - 36)log4log5=(x36)log4

log5/log4 = x - 36log5log4=x36

1.6096 = x - 361.6096=x36

37.61 = x37.61=x