Making #e^lambda = 5# we have
#5^-1 e^(lambda x)= 3x# or
#5^-1/3=x e^(-lambda x) = 1/lambda(lambda x)e^(-lambda x)# then
#(5^-1lambda)/3 = -(-lambdax)e^(-lambda x)# and now using the Lambert function
https://en.wikipedia.org/wiki/Lambert_W_function
applying #Y=Xe^X hArr X = W(Y)# we have
#-lambda x = W((-5^-1lambda)/3)# or
#x = -1/lambda W((-5^-1lambda)/3)# with #lambda = log_e 5# or
#x = -(W(-log_e5/15))/log_e5#
The Lambert function furnishes two solutions
#x = {0.0752499466729842,2.161545847967751}#