How do you solve 5x=20?
1 Answer
Dec 6, 2015
Take logs and use properties of logs to find:
x=log20log5=1+log21−log2≈1.86135
Explanation:
If we take common logs of both sides then we get:
log20=log5x=xlog5
So
We can do a little more with this if we know the log value
log5=log(102)=log10−log2=1−log2
≈1−0.30103=0.69897
log20=log(10⋅2)=log10+log2=1+log2
≈1+0.30103=1.30103
So