How do you solve #5^(x+3)=6#?

1 Answer
Nov 26, 2015

#x = ln(6)/ln(5) - 3#

Explanation:

We will use the property that
#ln(a^x) = xln(a)#


#5^(x+3) = 6#

#=> ln(5^(x+3)) = ln(6)#

#=>(x+3)ln(5) = ln(6)# #" "#(by the above property)

#=> x + 3 = ln(6)/ln(5)#

#=> x = ln(6)/ln(5) - 3#


.
.
.


Note that we can easily check the answer by using the property #ln(a)/ln(b) = log_b(a)#

Then
#5^(ln(6)/(ln(5))+3 - 3) = 5^(ln(6)/ln(5)) = 5^(log_5(6)) = 6#