How do you solve 5^x = 3^(x+2)5x=3x+2?

1 Answer
Mar 5, 2018

x~~4.301color(white)(88)x4.30188 3.d.p.

Explanation:

5^x=3^(x+2)5x=3x+2

Taking logarithms of both sides:

By the law of logarithms:

lna^b=bln(a)lnab=bln(a)

xln(5)=(x+2)ln(3)xln(5)=(x+2)ln(3)

xln(5)=xln(3)+2ln(3)xln(5)=xln(3)+2ln(3)

Subtract xln(3)xln(3) from both sides:

xln(5)-xln(3)=2ln(3)xln(5)xln(3)=2ln(3)

Factor LHSLHS

x(ln(5)-ln(3))=2ln(3)x(ln(5)ln(3))=2ln(3)

Divide by (ln(5)-ln(3))(ln(5)ln(3))

x=(2ln(3))/(ln(5)-ln(3))x=2ln(3)ln(5)ln(3)

x~~4.301color(white)(88)x4.30188 3.d.p.