How do you solve 7^(x+2)=e^(17x)?

1 Answer
Jan 10, 2016

x=(-2ln(7))/(ln(7)-17)

Explanation:

Using the following principle
If you have log to base b of b-> log_b(b)=1

Given: 7^(x+2)=e^(17x)

Taking logs

ln(7^(x+2))=ln(e^(17x))

=> (x+2)ln(7)=17xln(e)

But ln(e)=1 color(white)(.)giving:

(x+2)ln(7)=17x

Multiply out the bracket

xln(7)+2ln(7)=17x

Collecting like terms

xln(7)-17x=-2ln(7)

x=(-2ln(7))/(ln(7)-17)