How do you solve 8x=4×122x?

1 Answer
Sep 16, 2016

x=2ln(2)ln(18)

Explanation:

We have: 8x=4×122x

Let's apply the natural logarithm to both sides of the equation:

ln(8x)=ln(4×122x)

Using the laws of logarithms:

xln(8)=ln(4)+2xln(12)

Let's express some numbers in terms of 2:

xln(23)=ln(22)+2xln(12)

3xln(2)=2ln(2)+2xln(12)

3xln(2)2xln(12)=2ln(2)

x(3ln(2)2ln(12))=2ln(2)

x(ln(23)ln(122))=2ln(2)

x(ln(23122))=2ln(2)

x(ln(8144))=2ln(2)

x(ln(118))=2ln(2)

x(ln(1)ln(18))=2ln(2)

x(0ln(18))=2ln(2)

xln(18)=2ln(2)

xln(18)=2ln(2)

x=2ln(2)ln(18)

Therefore, the solution to the equation is x=2ln(2)ln(18).