How do you solve 8x^2 + 14x + 5 = 08x2+14x+5=0 by completing the square?
3 Answers
Explanation:
"using the method of "color(blue)"completing the square"using the method of completing the square
• " the coefficient of the "x^2" term must be 1"∙ the coefficient of the x2 term must be 1
"factor out 8"factor out 8
rArr8(x^2+7/4x+5/8)=0⇒8(x2+74x+58)=0
• "add/subtract "(1/2"coefficient of the x-term")^2" to"∙add/subtract (12coefficient of the x-term)2 to
x^2+7/4xx2+74x
8(x^2+2(7/8)xcolor(red)(+49/64)color(red)(-49/64)+5/8)=08(x2+2(78)x+4964−4964+58)=0
rArr8(x+7/8)^2+8(-49/64+5/8)=0⇒8(x+78)2+8(−4964+58)=0
rArr8(x+7/8)^2-9/8=0⇒8(x+78)2−98=0
rArr8(x+7/8)^2=9/8⇒8(x+78)2=98
"divide both sides by 8"divide both sides by 8
rArr(x+7/8)^2=9/64⇒(x+78)2=964
color(blue)"take the square root of both sides"take the square root of both sides
sqrt((x+7/8)^2)=+-sqrt(9/64)larrcolor(blue)"note plus or minus"√(x+78)2=±√964←note plus or minus
rArrx+7/8=+-3/8⇒x+78=±38
"subtract "7/8" from both sides"subtract 78 from both sides
rArrx=-7/8+-3/8⇒x=−78±38
rArrx=-7/8-3/8=-10/8=-5/4⇒x=−78−38=−108=−54
"or "x=-7/8+3/8=-4/8=-1/2or x=−78+38=−48=−12
Explanation:
Given:
Write as:
The 'perfect' square related to
but
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Explanation:
We have,
Now we have to find
Here,
Formula for
So,from
Note: Formula