Group the two variable terms together, then factor out the number in front of x2
(2x2+7x)−15=0
2(x2+72x+leave space)−15=0
Take 12 of the coefficient of x, square that and add and subtract inside the parentheses:
12 of 72=74 Squaring gives us 4916, so we write:
2(x2+72x+4916−4916)−15=0 Keep the positive 4916 inside the parentheses (we need it for the perfect square)
Write:
2(x2+72x+4916)−2(4916)−15=0
Factor the square and simplify the rest:
2(x+74)2−498−1208=0
2(x+74)2−1698=0
2(x+74)2=1698
(x+74)2=16916
x+74=±√16916
x+74=±134
x=−74±134
−74+134=64=32 and −74−134=−204=−5
The solutions are 32, 5