How do you solve by completing the square for x^2 - 5x = 9x25x=9?

1 Answer
Jun 14, 2015

(x-5/2)^2 = x^2-5x+25/4 = 9+25/4 = 61/4(x52)2=x25x+254=9+254=614

Hence: x = 5/2+-sqrt(61)/2x=52±612

Explanation:

(x-5/2)^2(x52)2

= x^2-5x+25/4=x25x+254

= 9+25/4=9+254

= 36/4+25/4=364+254

= (36+25)/4=36+254

= 61/4=614

So:

x - 5/2 = +-sqrt(61/4) = +-sqrt(61)/sqrt(4) = +-sqrt(61)/2x52=±614=±614=±612

Add 5/252 to both ends to get:

x = 5/2+-sqrt(61)/2x=52±612

In general,

ax^2+bx+c = a(x+b/(2a))^2 + (c - b^2/(4a))ax2+bx+c=a(x+b2a)2+(cb24a)