How do you solve by completing the square (x -2) (x + 3)= x - 10(x2)(x+3)=x10?

2 Answers
Mar 6, 2018

x=+-2ix=±2i

Explanation:

Given: (x-2)(x+3)=x-10(x2)(x+3)=x10

color(brown)("Consider just the left hand side (LHS)")Consider just the left hand side (LHS)

color(blue)((x-2))color(green)( (x+3) )(x2)(x+3)

Multiply everything in the right brackets by everything in the left.

color(green)(color(blue)(x)(x+3) color(white)("ddd")color(blue)(-2)(x+3) ) larrx(x+3)ddd2(x+3) Notice the minus followed the 2

color(green)(x^2+ubrace(3xcolor(white)("dddd")-2x)-6)

color(green)(x^2color(white)("dddddd")+xcolor(white)("ddd")-6)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(brown)("Putting it all back together")

color(white)("dd")"LHS"color(white)("ddddd")=color(white)("ddd")"RHS"
x^2+x-6color(white)("dd")=color(white)("dd")x-10

As x is on both sides we can cancel them out.

x^2+cancel(x)-6color(white)("dd")=color(white)("dd")cancel(x)-10

Add 10 to both sides

x^2+4=0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(brown)("Completing the square") ( If they insist !!!)

Write as x^2+0x+4=0

(x+0/2)^2+4=0

(x+0/2)^2=-4

Square root both sides

x+0/2=+-sqrt(-4)

x=+-sqrt(4xx(-1))

x=+-2i

Mar 6, 2018

This solution is irrational. See below...

Explanation:

enter image source here
enter image source here

Hope this helps!