We have: e^(2 x) - 5 e^(x) + 6 = 0e2x−5ex+6=0
Using the laws of exponents:
Rightarrow (e^(x))^(2) - 5 e^(x) + 6 = 0⇒(ex)2−5ex+6=0
Let's factorise the equation:
Rightarrow (e^(x))^(2) - 2 e^(x) - 3 e^(x) + 6 = 0⇒(ex)2−2ex−3ex+6=0
Rightarrow e^(x) (e^(x) - 2) - 3 (e^(x) - 2) = 0⇒ex(ex−2)−3(ex−2)=0
Rightarrow (e^(x) - 2) (e^(x) - 3) = 0⇒(ex−2)(ex−3)=0
Rightarrow e^(x) = 2, 3⇒ex=2,3
Applying lnln to both sides of the equation:
Rightarrow ln (e^(x)) = ln (2), ln (3)⇒ln(ex)=ln(2),ln(3)
Using the laws of logarithms:
Rightarrow x ln (e) = ln (2), ln (3)⇒xln(e)=ln(2),ln(3)
therefore x = ln (2), ln (3)