How do you solve #e^x(2e^x-1) = 10#?
1 Answer
Real solution:
Complex solutions:
#x=ln(5/2)+2npii#
#x=ln(2)+(2n+1)pii#
Explanation:
Given:
#e^x(2e^x-1) = 10#
We can treat this as a quadratic in
Transposing and subtracting
#0 = e^x(2e^x-1)-10#
#color(white)(0) = 2(e^x)^2-(e^x)-10#
#color(white)(0) = (2(e^x)^2-5(e^x))+(4(e^x)-10)#
#color(white)(0) = e^x(2e^x-5)+2(2e^x-5)#
#color(white)(0) = (e^x+2)(2e^x-5)#
So:
#e^x = -2" "# or#" "e^x = 5/2#
If
#x = ln (5/2)#
Note however that
#x = ln(5/2) + 2npi i#
#x = ln(2) + (2n+1)pi i#
for any integer