How do you solve e^x(2e^x-1) = 10?
1 Answer
Jun 2, 2018
Real solution:
Complex solutions:
x=ln(5/2)+2npii
x=ln(2)+(2n+1)pii
Explanation:
Given:
e^x(2e^x-1) = 10
We can treat this as a quadratic in
Transposing and subtracting
0 = e^x(2e^x-1)-10
color(white)(0) = 2(e^x)^2-(e^x)-10
color(white)(0) = (2(e^x)^2-5(e^x))+(4(e^x)-10)
color(white)(0) = e^x(2e^x-5)+2(2e^x-5)
color(white)(0) = (e^x+2)(2e^x-5)
So:
e^x = -2" " or" "e^x = 5/2
If
x = ln (5/2)
Note however that
x = ln(5/2) + 2npi i
x = ln(2) + (2n+1)pi i
for any integer