How do you solve for x in (125)^x = 625(125)x=625?

1 Answer
Apr 9, 2016

x=4/3=1.333x=43=1.333

Explanation:

125^x=625125x=625 means x=log_(125)625x=log125625

As log_ba=loga/logblogba=logalogb

x=log625/log125=2.79588/2.09691=1.333x=log625log125=2.795882.09691=1.333

Alternately - 125^x=625hArr(5^3)^x=5^4hArr5^(3x)=5^4125x=625(53)x=5453x=54 or

3xlog5=4log53xlog5=4log5 or x=4/3=1.333x=43=1.333