How do you solve for x in 2^(3x-2)*3^(2x-3)=36^(x-1)?

1 Answer
Apr 12, 2016

x=0,63

Explanation:

2^(3x-2)*3^(2x-3)=36^(x-1)

2^(3x)/2^2*3^(2x)/3^3=36^x/36

2^(3x)/2^2*3^(2x)/3^3=6^(2x)/6^2

(2^(3x)*3^(2x))/6^(2x)=(2^2*3^3)/6^2

(2^(3x)*3^(2x))/6^(2x)=3

(2^(3x)*3^(2x))/(2*3)^(2x)=3

(2^(3x)*cancel(3^(2x)))/(2^(2x)*cancel(3^(2x)))=3

2^(3x-2x)=3

2^x=3

log 2^x=log 3
x*log2=log3

x=log2 /log3

log2=0,3010299957
log3=0,4771212547

x=0,63