How do you solve for x in 2log_3x=log_3 32+log_3 22log3x=log332+log32?

1 Answer
Feb 9, 2017

8sqrt282

Explanation:

For logarithms we have the following definition

log_ab=c=>a^c=b---(1)logab=cac=b(1)

we also have the standard results

log_aX+log_aY=log_aXYlogaX+logaY=logaXY----(2)(2)

log_aX-log_aY=log_a(X/Y)---(3)logaXlogaY=loga(XY)(3)

log_aX^n=nlog_aX logaXn=nlogaXcolor(white)(****)---(4)(4)

so we have

2log_3x=log_(3)32+log_(3)82log3x=log332+log38

using " "(2)" on "RHS (2) on RHS

2log_3x=log_(3)(32xx4)2log3x=log3(32×4)

2log_3x=log_(3)(128)2log3x=log3(128)

=>log_3x^2=log_(3)128log3x2=log3128

"using "(4)" on "LHSusing (4) on LHS

because " the bases are the same we have:"

x^2=128

=>x=sqrt128

=>x=sqrt(64xx2)=8sqrt2