How do you solve for x in #6.428 = 1.263 ^ (x)#?

1 Answer
Apr 28, 2016

I found: #x=7.9689#

Explanation:

Take the natural log of both sides:

#color(red)(ln)6.428=color(red)(ln)1.263^x#

use the property of logs on the exponent of the argument:

#color(red)(ln)6.428=color(blue)(x)color(red)(ln)1.263#

rearrange:

#x=(ln(6.428))/(ln(1.263))=7.9689#