How do you solve for x in log_ 6 (2-x) + log _ 6 (3-4x) = 1log6(2x)+log6(34x)=1?

1 Answer
Feb 6, 2016

x= 0x=0

Explanation:

Property of Logarithmic expression

log A + log B = Log(AB) " " " " " (1)logA+logB=log(AB) (1)
n log A= log A^n " " " " (2)nlogA=logAn (2)
log_ay= x => a^x = y " " " (3) logay=xax=y (3)

Given :

log_6(2-x)+ log_6(3-4x) = 1log6(2x)+log6(34x)=1

Rewrite as:

Using rule (2)

log_6(2-x)(3-x)= 1log6(2x)(3x)=1

log_6(6-2x-3x+x^2)= 1log6(62x3x+x2)=1

log_6(6-5x+x^2) = 1log6(65x+x2)=1

Using rule (3)

6^1 = 6-5x^2 + x^261=65x2+x2

Now we have a simple quadratic equation, let's solve it.

x^2 -5x+6= 6x25x+6=6

-6 " " " -66 6

================

x^2 -5x = 0x25x=0
x(x-5) = 0x(x5)=0

x= 0 x=0 or x= 5x=5

Always check your answer if you have 2 solutions when solving a log equation .

color(blue)(Check " " x= 5)Check x=5

x= 5x=5

log_6(2-5) + log_6(3-4(5))= 1log6(25)+log6(34(5))=1

log_6(-3) + log_6(-17) = 1log6(3)+log6(17)=1

color(red)( x = 5 " Extraneous " solution)x=5 Extraneous solution

Can't evaluate the expression on the left, because the argument of any logarithm always POSITIVE and greater than zero, due to domain restriction

color(blue)(Check " " x= 0)Check x=0

color(red)(log_6(2-0)+log_6(3-4(0))= 1log6(20)+log6(34(0))=1

log_6(2)+log_6(3) = 1log6(2)+log6(3)=1

log_6(6) = 1log6(6)=1

1= 11=1

Solution color(red)(x= 0)x=0