How do you solve for x in log_ 6 (2-x) + log _ 6 (3-4x) = 1log6(2−x)+log6(3−4x)=1?
1 Answer
Explanation:
Property of Logarithmic expression
log A + log B = Log(AB) " " " " " (1)logA+logB=log(AB) (1)
n log A= log A^n " " " " (2)nlogA=logAn (2)
log_ay= x => a^x = y " " " (3) logay=x⇒ax=y (3)
Given :
log_6(2-x)+ log_6(3-4x) = 1log6(2−x)+log6(3−4x)=1
Rewrite as:
Using rule (2)
log_6(2-x)(3-x)= 1log6(2−x)(3−x)=1
log_6(6-2x-3x+x^2)= 1log6(6−2x−3x+x2)=1
log_6(6-5x+x^2) = 1log6(6−5x+x2)=1
Using rule (3)
6^1 = 6-5x^2 + x^261=6−5x2+x2
Now we have a simple quadratic equation, let's solve it.
x^2 -5x+6= 6x2−5x+6=6
-6 " " " -6−6 −6
x^2 -5x = 0x2−5x=0
x(x-5) = 0x(x−5)=0
Always check your answer if you have 2 solutions when solving a log equation .
log_6(-3) + log_6(-17) = 1log6(−3)+log6(−17)=1
Can't evaluate the expression on the left, because the argument of any logarithm always POSITIVE and greater than zero, due to domain restriction
log_6(2)+log_6(3) = 1log6(2)+log6(3)=1
log_6(6) = 1log6(6)=1
1= 11=1
Solution