How do you solve for x in log63xlog6(x+1)=log61?

1 Answer
Feb 14, 2015

You can use the property of the log:
logaMlogaN=loga(MN)
So you have:
log6(3xx+1)=log6(1)
log6(3xx+1)=0
Because from the definition od logarithm:
logab=xax=b
and: log6(1)=0

as for:
log6(3xx+1)=0
again you get:
(3xx+1)=60=1
3x=x+1
x=12