How do you solve for x in log_6x=2-log_6 4?

1 Answer
Jul 3, 2018

color(blue)(x=9)

Explanation:

log_6(x)=2-log_6(4)

log_6(x)+log_6(4)=2

log(a)+log(b)=log(ab)

log_6(4x)=2

Raising the base to these:

6^(log_6(4x))=6^2

4x=6^2

x=(6^2)/4=36/4=9