How do you solve for x in #log_x(32)=5#?

1 Answer
Aug 21, 2015

If #log_x(32)=5# then #x^5 = x^(log_x(32)) = 32#.

So #x = root(5)(32) = root(5)(2^5) = 2#.

Explanation:

Alternatively, use the change of base formula:

#5 = log_x(32) = ln(32)/ln(x)#

So #ln(x) = ln(32)/5 = ln(root(5)(32)) = ln(root(5)(2^5)) = ln(2)#

Hence #x = 2#