How do you solve for x in logx(32)=5?

1 Answer
Aug 21, 2015

If logx(32)=5 then x5=xlogx(32)=32.

So x=532=525=2.

Explanation:

Alternatively, use the change of base formula:

5=logx(32)=ln(32)ln(x)

So ln(x)=ln(32)5=ln(532)=ln(525)=ln(2)

Hence x=2