How do you solve k^2 + 6k - 24 = 0k2+6k24=0 by completing the square?

1 Answer
Apr 6, 2016

The solutions are:
color(green)(k = sqrt 33 - 3k=333 or , color(green)(k = -sqrt 33 -3k=333

Explanation:

k^2 + 6k - 24 = 0k2+6k24=0

k^2 + 6k = 24 k2+6k=24

To write the Left Hand Side as a Perfect Square, we add 9 to both sides
k^2 + 6k + 9 = 24 + 9 k2+6k+9=24+9

k^2 + 2 * k * 3 + 3^2 = 33 k2+2k3+32=33

Using the Identity color(blue)((a+b)^2 = a^2 + 2ab + b^2(a+b)2=a2+2ab+b2, we get
(k + 3)^2 = 33(k+3)2=33

k+ 3 = sqrt33k+3=33 or k + 3 = -sqrt33k+3=33

color(green)(k = sqrt 33 - 3k=333 or color(green)(x = -sqrt 33 -3x=333