How do you solve ln(3x+1)ln(5+x)=ln2?

1 Answer
Oct 1, 2015

x=9

Explanation:

ln(3x+1)ln(5+x)=ln(2) using laws of logs:

ln[3x+1x+5]=ln(2) if ln(A)=ln(B)A=B:

3x+1x+5=2 multiply by (x+5):

3x+1=2(x+5) expand right side:

3x+1=2x+10 subtract2x and 1 from both sides:

3x2x=101 simplify:

x=9