Given
color(white)("XXX")ln(x+1)-1=ln(x-1)XXXln(x+1)−1=ln(x−1)
rArr⇒
color(white)("XXX")ln(x+1)-ln(x-1) = 1 = ln(e)XXXln(x+1)−ln(x−1)=1=ln(e)
color(white)("XXX")ln((x+1)/(x-1))= ln(e)XXXln(x+1x−1)=ln(e)
color(white)("XXX")(x+1)/(x-1)=eXXXx+1x−1=e
color(white)("XXX")x+1=ex-eXXXx+1=ex−e
color(white)("XXX")x-ex=-e-1XXXx−ex=−e−1
color(white)("XXX")x(1-e)=-e-1XXXx(1−e)=−e−1
color(white)("XXX")x=(e+1)/(e-1)~~2.164XXXx=e+1e−1≈2.164