How do you solve ln(x+1) - 1 = ln(x-1)ln(x+1)1=ln(x1)?

1 Answer
Feb 24, 2016

x= (e+1)/(e-1)x=e+1e1

Explanation:

Given
color(white)("XXX")ln(x+1)-1=ln(x-1)XXXln(x+1)1=ln(x1)

rArr
color(white)("XXX")ln(x+1)-ln(x-1) = 1 = ln(e)XXXln(x+1)ln(x1)=1=ln(e)

color(white)("XXX")ln((x+1)/(x-1))= ln(e)XXXln(x+1x1)=ln(e)

color(white)("XXX")(x+1)/(x-1)=eXXXx+1x1=e

color(white)("XXX")x+1=ex-eXXXx+1=exe

color(white)("XXX")x-ex=-e-1XXXxex=e1

color(white)("XXX")x(1-e)=-e-1XXXx(1e)=e1

color(white)("XXX")x=(e+1)/(e-1)~~2.164XXXx=e+1e12.164