How do you solve ln(x+1)−ln(x−2)=lnx?
3 Answers
Explanation:
If:
Then:
Solving:
So solution is:
Explanation:
Taking the exponent of both sides, we get:
x+1x−2=x
Multiplying both sides by
x+1=x2−2x
Subtract
0=x2−3x−1
0=(x−32)2−94−1
0=(x−32)2−(√132)2
0=(x−32−√132)(x−32+√132)
So:
x=32±√132
One of these values
The other value
ln(32−√132+1)−ln(32−√132−2)
=ln(52−√132)−ln(12+√132)−iπ
≠ln(√132−32)+iπ=ln(32−√132)
See below.
Explanation:
In the quest for real solutions, supposing
and the real solutions are from