How do you solve ln x = 1 - ln (x+8)?

2 Answers
Aug 6, 2015

I found: x=-4+sqrt(16+e)

Explanation:

Write it rearranging as:
ln(x)+ln(x+8)=1
use the fact that lnx+lny=ln(xy)
so:
ln[x(x+8)]=1
use the definition of log:
lnx=a -> x=e^a
x(x+8)=e^1
x^2+8x-e=0
using the Quadratic Formula:
x_(1,2)=(-8+-sqrt(64+4e))/2=(-8+-2sqrt(16+e))/2=
=-4+-sqrt(16+e)
so you get two solutions but one, -4-sqrt(16+e), doesn't work when substituted into the original equation (it is a negative number, try it!) and you can discard it keeping only:
x=-4+sqrt(16+e)

Aug 6, 2015

x=-4+-sqrt(16+e)

Explanation:

Rewriting the equation , it is ln x + ln(x+8) =1

ln x(x+8)=1

x^2 +8x= e

x^2 +8x -e=0

x= (-8+-sqrt (64+4e))/2

x=-4+-sqrt(16+e)