How do you solve (ln(x))^2 + ln(x) - 6 = 0?

1 Answer
Jun 5, 2018

x=e^(-3)=1/(e^3) or x=e^2

Explanation:

We know that,

(1)log_a y=X <=>y=a^X, AAa in RR^+ -{1},yinRR^+,X inRR

(2)color(red)(ln(y)=X<=>y=e^X ),where,yinRR^+ andcolor(red)( X inRR

Here,

(ln(x))^2+ln(x)-6=0

Let,

ln(x)=m

So,

m^2+m-6=0

m^2+3m-2m-6=0

m(m+3)-2(m+3)=0

(m+3)(m-2)=0

m+3=0 or m-2=0

m=-3 or m=2

Subst. back, m=ln(x)

:.lnx=-3 or lnx=2,where,color(red)( (-3) and 2inRR

=>x=e^(-3) or x=e^2