How do you solve ln(x)=3+ln(x-3)?

1 Answer
Aug 13, 2015

color(red)( x=(3e^3)/(e^3-1))

Explanation:

lnx=3+ln(x-3)

Subtract ln(x-3) from each side.

lnx-ln(x-3)=3

Recall that lna-lnb=ln(a/b).

ln(x/(x-3)) = 3

Convert the logarithmic equation to an exponential equation.

e^ln(x/(x-3)) = e^3

Remember that e^lnx =x, so

x/(x-3)=e^3

x=e^3(x-3) = xe^3-3e^3

xe^3-x=3e^3

x(e^3-1)=3e^3

x=(3e^3)/(e^3-1)

Check:

lnx=3+ln(x-3)

If x=(3e^3)/(e^3-1),

ln((3e^3)/(e^3-1)) = 3+ln((3e^3)/(e^3-1)-3)

ln(3e^3)-ln(e^3-1)=3+ln((3e^3-3(e^3-1))/(e^3-1))

ln(3e^3)-ln(e^3-1)=3+ln((color(red)(cancel(color(black)(3e^3)))-color(red)(cancel(color(black)(3e^3)))+3)/(e^3-1))

ln(3e^3)-color(red)(cancel(color(black)(ln(e^3-1))))=3+ln3-color(red)(cancel(color(black)(ln(e^3-1))))

ln3+3=3+ln3

x=(3e^3)/(e^3-1) is a solution.