How do you solve lnx4ln3=ln(5x)?

1 Answer
Aug 13, 2015

x=95

Explanation:

lnx4ln3=ln(5x)

Recall that alnb=ln(ab), so

lnxln34=ln(5x)

Recall that lnalnb=ln(ab), so

ln(x34)=ln(5x)

Convert the logarithmic equation to an exponential equation.

eln(x34)=eln(5x)

Remember that elnx=x, so

x34=5x

x2=5×34

x=±5×34=±5×34=±5×32

x=95 and x=95 are possible solutions.

Check:

lnx4ln3=ln(5x)

If x=95,

ln(95)4ln3=ln(595)

ln9+ln5ln34=ln5ln(95)

ln9+ln5ln(32)2=ln(5)2ln9ln5

ln9+ln52ln9=2ln5ln9ln5

ln5ln9=ln5ln9

x=95 is a solution.

If x=95,

ln(95)4ln3=ln(595)=ln5ln(95)

But ln(95) is not defined.

x=95 is not a solution.