How do you solve ln(x + 5) + ln(x - 1) = 2?

1 Answer
Sep 21, 2015

x=-2+sqrt(e^2+9)

Explanation:

ln(x+5)+ln(x−1)=2
First notice the domain is:x>1, next:
Simplify the left side(LS) using: log(a)+log(b)=log(ab) :
ln[(x+5)(x-1)]=2
Expand and simplify inside the bracket on LS:
ln(x^2+4x-5)=2
Use the log property: log_a(x)=yhArrx=a^y:
x^2+4x-5=e^2
Solve the quadratic by completing the square:
x^2+4x=e^2+5
x^2+4x+(4/2)^2=e^2+5+(4/2)^2
Simplify:
x^2+4x+4=e^2+5+4
Or:
(x+2)^2=e^2+9
Take square root of both sides:
x+2=+-sqrt(e^2+9)
Subtract 2 from both sides:
x=-2+-sqrt(e^2+9)
Reject the negative root (not in the domain):
x=-2+sqrt(e^2+9)