ln(x−6)+ln(x+3)=ln22
Recall that lna+lnb=lnab.
∴ ln(x−6)(x+3)=ln22
Convert the logarithmic equation to an exponential equation.
eln((x−6)(x+3))=eln22
Remember that elnx=x, so
(x−6)(x+3)=22
x2−3x−18=22
x2−3x−40=0
(x−8)(x+5)=0
x−8=0 and x+5=0
x=8 and x=−5 are possible solutions.
Check:
ln(x−6)+ln(x+3)=ln22
If x=8,
ln(8−6)+ln(8+3)=ln22
ln2+ln11=ln22
ln(2×11)=ln22
ln22=ln22
x=8 is a solution.
If x=−5,
ln(−5−6)+ln(−5+3)=ln22
ln(−11)+ln(−2)=ln22
But ln(−11) and ln(−2) are not defined.
∴ x=−5 is not a solution.