How do you solve ln(x6)+ln(x+3)=ln22?

1 Answer
Aug 13, 2015

x=8

Explanation:

ln(x6)+ln(x+3)=ln22

Recall that lna+lnb=lnab.

ln(x6)(x+3)=ln22

Convert the logarithmic equation to an exponential equation.

eln((x6)(x+3))=eln22

Remember that elnx=x, so

(x6)(x+3)=22

x23x18=22

x23x40=0

(x8)(x+5)=0

x8=0 and x+5=0

x=8 and x=5 are possible solutions.

Check:

ln(x6)+ln(x+3)=ln22

If x=8,

ln(86)+ln(8+3)=ln22

ln2+ln11=ln22

ln(2×11)=ln22

ln22=ln22

x=8 is a solution.

If x=5,

ln(56)+ln(5+3)=ln22

ln(11)+ln(2)=ln22

But ln(11) and ln(2) are not defined.

x=5 is not a solution.